Extensions 1→N→G→Q→1 with N=Dic13 and Q=C23

Direct product G=N×Q with N=Dic13 and Q=C23
dρLabelID
C23×Dic13416C2^3xDic13416,225

Semidirect products G=N:Q with N=Dic13 and Q=C23
extensionφ:Q→Out NdρLabelID
Dic131C23 = C2×D4×D13φ: C23/C22C2 ⊆ Out Dic13104Dic13:1C2^3416,216
Dic132C23 = C22×C13⋊D4φ: C23/C22C2 ⊆ Out Dic13208Dic13:2C2^3416,226
Dic133C23 = C22×C4×D13φ: trivial image208Dic13:3C2^3416,213

Non-split extensions G=N.Q with N=Dic13 and Q=C23
extensionφ:Q→Out NdρLabelID
Dic13.1C23 = C22×Dic26φ: C23/C22C2 ⊆ Out Dic13416Dic13.1C2^3416,212
Dic13.2C23 = C2×D525C2φ: C23/C22C2 ⊆ Out Dic13208Dic13.2C2^3416,215
Dic13.3C23 = C2×D42D13φ: C23/C22C2 ⊆ Out Dic13208Dic13.3C2^3416,217
Dic13.4C23 = D46D26φ: C23/C22C2 ⊆ Out Dic131044Dic13.4C2^3416,218
Dic13.5C23 = C2×Q8×D13φ: C23/C22C2 ⊆ Out Dic13208Dic13.5C2^3416,219
Dic13.6C23 = Q8.10D26φ: C23/C22C2 ⊆ Out Dic132084Dic13.6C2^3416,221
Dic13.7C23 = D48D26φ: C23/C22C2 ⊆ Out Dic131044+Dic13.7C2^3416,223
Dic13.8C23 = D4.10D26φ: C23/C22C2 ⊆ Out Dic132084-Dic13.8C2^3416,224
Dic13.9C23 = C2×D13⋊C8φ: C23/C22C2 ⊆ Out Dic13208Dic13.9C2^3416,199
Dic13.10C23 = C2×C52.C4φ: C23/C22C2 ⊆ Out Dic13208Dic13.10C2^3416,200
Dic13.11C23 = D13⋊M4(2)φ: C23/C22C2 ⊆ Out Dic131044Dic13.11C2^3416,201
Dic13.12C23 = Dic26.C4φ: C23/C22C2 ⊆ Out Dic132088-Dic13.12C2^3416,205
Dic13.13C23 = D52.C4φ: C23/C22C2 ⊆ Out Dic132088+Dic13.13C2^3416,207
Dic13.14C23 = C22×C13⋊C8φ: C23/C22C2 ⊆ Out Dic13416Dic13.14C2^3416,209
Dic13.15C23 = C2×C13⋊M4(2)φ: C23/C22C2 ⊆ Out Dic13208Dic13.15C2^3416,210
Dic13.16C23 = C2×D52⋊C2φ: trivial image208Dic13.16C2^3416,220
Dic13.17C23 = C4○D4×D13φ: trivial image1044Dic13.17C2^3416,222

׿
×
𝔽